Асимптотические свойства критериев симметрии и согласия, основанных на характеризациях. Асимптотические направления. асимптоты Асимптотические критерии выбора

Определение. Направление, определяемое ненулевым вектором называется асимптотическимнаправлением


относительно линии второго порядка, если любая

прямая этого направления (то есть параллельная вектору ) либо имеет с линией не более одной общей точки, либо содержится в этой линии.?
Сколько общих точек может быть у линии второго порядка и прямой асимптотического направления относительно этой линии?

В общей теории линий второго порядка доказывается, что если

То ненулевой вектор ( задаёт асимптотическое направление относительно линии

(общий критерий асимптотического направления).

Для линий второго порядка

если , то нет асимптотических направлений,

если то существует два асимптотических направления,

если то существует только одно асимптотическое направление.

Полезной оказывается следующая лемма (критерий асимптотического направления линии параболического типа
).

Лемма

. Пусть — линия параболического типа.

Ненулевой вектор имеет асимптотическое направление

относительно image096-4769175 . (5)

(Задача. Доказать лемму.)

Определение
. Прямая асимптотического направления называется асимптотой

линии второго порядка, если эта прямая либо не пересекается с , либо содержится в ней.

Теорема

. Если имеет асимптотическое направление относительно , то асимптота, параллельная вектору , определяется уравнением

Заполняем таблицу.

ЗАДАЧИ
.

1. Найти векторы асимптотических направлений для следующих линий второго поря дка:

4 image101-8527957 — гиперболического типа два асимптотических направления.

Воспользуемся критерием асимптотического направления:

Имеет асимптотическое направление относительно данной линии 4 .

Если =0, то =0, то есть — нулевой. Тогда Поделим на Получаем квадратное уравнение: image108-6621102 , где t = . Решаем это квадратное уравнение и находим два решения: t = 4 и t = 1. Тогда асимптотические направления линии image110-6327826 .

(Можно рассмотреть два способа, так как линия – параболического типа.)

2. Выясните, имеют ли оси координат асимптотические направления относительно линий второго порядка:

3. Напишите общее уравнение линии второго порядка, для которой

а) ось абсцисс имеет асимптотическое направление;

б) Обе оси координат имеют асимптотические направления;

в) оси координат имеют асимптотические направления и О – центр линии.

4. Напишите уравнения асимптот для линий:

а) ng w:val=»EN-US»/>y=0″> ;

5. Докажите, что если линия второго порядка имеет две непараллельные асимптоты, то их точка пересечения является центром данной линии.

Указание:
Так как есть две непараллельные асимптоты, то существует два асимптотических направления, тогда , а, значит, линия – центральная.

Запишите уравнения асимптот в общем виде и систему для нахождения центра. Всё очевидно.

6.(№920) Напишите уравнение гиперболы, проходящей через точку А(0, -5) и имеющей асимптоты х – 1 = 0 и 2х – y + 1 = 0.

Указание
. Воспользуйтесь утверждением предыдущей задачи.

Домашнее задание
. , №915(в,д,е), №916 (в,г,д), №920 (если не успели);

Шпаргалки;

Силаев, Тимошенко. Практические задания по геометрии,

1 семестр. С.67, вопросы 1-8, с.70, вопросы 1-3 (устно).

ДИАМЕТРЫ ЛИНИИ ВТОРОГО ПОРЯДКА.

СОПРЯЖЕННЫЕ ДИАМЕТРЫ.

Дана аффинная система координат .

Определение.
Диаметром

линии второго порядка, сопряженным вектору не асимптотического направления относительно , называется множество середин всех хорд линии , параллельных вектору .

На лекции доказано, что диаметр – это прямая и получено её уравнение

Рекомендации
: Показать (на эллипсе), как строится (задаём не асимптотическое направление; проводим [две] прямые этого направления, пересекающие линию; находим середины отсекаемых хорд; проводим через середины прямую – это и есть диаметр).

Обсудить:

1. Почему в определении диаметра берётся вектор не асимптотического направления. Если не могут ответить, то попросите построить диаметр, например, для параболы.

2. Любая ли линия второго порядка имеет хотя бы один диаметр? Почему?

3. На лекции доказано, что диаметр – это прямая. Серединой какой хорды является точка М на рисунке?

 

4. Посмотрите на скобки в уравнении (7). Что они напоминают?

Вывод: 1) каждый центр принадлежит каждому диаметру;

2) если существует прямая центров, то существует единственный диаметр.

5. Какое направление имеют диаметры линии параболического типа? (Асимптотическое)

Доказательство (наверно, на лекции).

Пусть диаметр d, заданный уравнением (7`) сопряжен вектору не асимптотического направления. Тогда его направляющий вектор

(-(image122-3073529), image123-1978809). Покажем, что этот вектор имеет асимптотическое направление. Воспользуемся критерием вектора асимптотического направления для линии параболического типа (см.(5)). Подставляем и убеждаемся (не забываем, что .

6. Сколько диаметров у параболы? Их взаимное расположение? Сколько диаметров у остальных линий параболического типа? Почему?

7. Как построить общий диаметр некоторых пар линий второго порядка (см. вопросы 30, 31 далее).

8. Заполняем таблицу, обязательно делаем рисунки.

1. . Напишите уравнение множества середин всех хорд, параллельных вектору

2. Напишите уравнение диаметра d, проходящего через точку К(1,-2) для линии .

Этапы решения
:

1-й способ
.

1. Определяем тип (чтобы знать, как ведут себя диаметры этой линии).

В данном случае линия центральная, тогда все диаметры проходят через центр С.

2. Составляем уравнение прямой, проходящей через две точки К и С. Это и есть искомый диаметр.

2-й способ
.

1. Записываем уравнение диаметра d в виде (7`).

2. Подставив в это уравнение координаты точки К, находим зависимость между координатами вектора, сопряженного диаметру d.

3. Задаём этот вектор, учитывая найденную зависимость, и составляем уравнение диаметра d.

В данной задаче вычислять проще вторым способом.

3. . Напишите уравнение диаметра, параллельного оси абсцисс.

4. Найдите середину хорды, отсекаемой линией

на прямой x + 3y – 12 =0.

Указание к решению
: Конечно, можно найти точки пересечения данных прямой и линии , а затем – середину полученного отрезка. Желание сделать так отпадает, если взять, к примеру, прямую с уравнением х +3у – 2009 =0.

Как
отмечено в предыдущем разделе, изучение
классических алгоритмов во многих
случаях может быть проведено с помощью
асимптотических методов математической
статистики, в частности, с помощью ЦПТ
и методов наследования сходимости . Отрыв классической математической
статистики от нужд прикладных исследований
проявился, в частности, в том, что в
распространенных монографиях недостает
математического аппарата, необходимого,
в частности, для изучения двухвыборочных
статистик. Суть в том, что переходить к
пределу приходится не по одному параметру,
а по двум – объемам двух выборок. Пришлось
разработать соответствующую теорию –
теорию наследования сходимости,
изложенную в нашей монографии .

Однако
применять результаты подобного изучения
придется при конечных объемах выборок.
Возникает целый букет проблем, связанных
с таким переходом. Часть из них обсуждалась
в в связи с изучением свойств статистик,
построенных по выборкам из конкретных
распределений.

Однако
при обсуждении влияния отклонений от
исходных предположений на свойства
статистических процедур возникают
дополнительные проблемы. Какие отклонения
считать типичными? Ориентироваться ли
на наиболее «вредные» отклонения,
в наибольшей степени искажающие свойства
алгоритмов, или же сосредоточить внимание
на «типичных» отклонениях?

При
первом подходе получаем гарантированный
результат, но «цена» этого результата
может быть излишне высокой. В качестве
примера укажем на универсальное
неравенство Берри-Эссеена для погрешности
в ЦПТ . Совершенно справедливо
подчеркивает А.А. Боровков , что
«скорость сходимости в реальных
задачах, как правило, оказывается лучше.»

При
втором подходе возникает вопрос, какие
отклонения считать «типичными».
Попытаться ответить на этот вопрос
можно, анализируя большие массивы
реальных данных. Вполне естественно,
что ответы различных исследовательских
групп будут различаться, как это видно,
например, по результатам, приведенным
в статье .

Одна
из ложных идей — использование при
анализе возможных отклонений только
какого-либо конкретного параметрического
семейства – распределений Вейбулла-Гнеденко,
трехпараметрического семейства гамма
— распределений и др. Еще в 1927 г. акад. АН
СССР С.Н. Бернштейн обсуждал методологическую
ошибку, состоящую в сведении всех
эмпирических распределений к
четырехпараметрическому семейству
Пирсона . Однако и до сих пор
параметрические методы статистики
весьма популярны, особенно среди
прикладников, и вина за это заблуждение
лежит прежде всего на преподавателях
статистических методов (см. ниже, а также
статью ).

15. Выбор одного из многих критериев для проверки конкретной гипотезы

Во
многих случаях для решения конкретной
практической задачи разработано много
методов, и специалист по математическим
методам исследования стоит перед
проблемой: какой из них предложить
прикладнику для анализа конкретных
данных?

В
качестве примера рассмотрим задачу
проверки однородности двух независимых
выборок. Как известно , для ее решения
можно предложить массу критериев:
Стьюдента, Крамера-Уэлча, Лорда, хи —
квадрат, Вилкоксона (Манна-Уитни), Ван
– дер — Вардена, Сэвиджа, Н.В.Смирнова,
типа омега-квадрат (Лемана-Розенблатта),
Г.В.Мартынова и др. Какой выбрать?

Естественным
образом приходит в голову идея
«голосования»: провести проверку
по многим критериям, а затем принять
решение «по большинству голосов».
С точки зрения статистической теории
такая процедура приводит попросту к
построению еще одного критерия, который
априори ничем не лучше прежних, но более
труден для изучения. С другой стороны,
если совпадают решения по всем
рассмотренным статистическим критериям,
исходящим из различных принципов, то в
соответствии с концепцией устойчивости
это повышает доверие к полученному
общему решению.

Распространено,
особенно среди математиков, ложное и
вредное мнение о необходимости поиска
оптимальных методов, решений и т.д. Дело
в том, что оптимальность обычно исчезает
при отклонении от исходных предпосылок.
Так, среднее арифметическое в качестве
оценки математического ожидания является
оптимальной только тогда, когда исходное
распределение — нормальное , в то время
как состоятельной оценкой — всегда, лишь
бы математическое ожидание существовало.
С другой стороны, для любого произвольно
взятого метода оценивания или проверки
гипотез обычно можно так сформулировать
понятие оптимальности, чтобы рассматриваемый
метод стал оптимальным – с этой специально
выбранной точки зрения. Возьмем, например,
выборочную медиану как оценку
математического ожидания. Она, разумеется,
оптимальна, хотя и в другом смысле, чем
среднее арифметическое (оптимальное
для нормального распределения). А именно,
для распределения Лапласа выборочная
медиана является оценкой максимального
правдоподобия, а потому оптимальной (в
смысле, уточненном в монографии ).

Критерии
однородности были проанализированы в
монографии . Естественных подходов
к сравнению критериев несколько — на
основе асимптотической относительной
эффективности по Бахадуру, Ходжесу-Леману,
Питмену. И выяснилось, что каждый критерий
является оптимальным при соответствующей
альтернативе или подходящем распределении
на множестве альтернатив. При этом
математические выкладки обычно используют
альтернативу сдвига, сравнительно редко
встречающуюся в практике анализа
реальных статистических данных (в связи
с критерием Вилкоксона эта альтернатива
обсуждалась и критиковалась нами в
). Итог печален — блестящая математическая
техника, продемонстрированная в , не
позволяет дать рекомендации для выбора
критерия проверки однородности при
анализе реальных данных. Другими словами,
с точки зрения работы прикладника, т.е.
анализа конкретных данных, монография
бесполезна. Блестящее владение
математикой и огромное трудолюбие,
продемонстрированные автором этой
монографии, увы, ничего не принесли
практике.

Конечно,
каждый практически работающий статистик
так или иначе решает для себя проблему
выбора статистического критерия. На
основе ряда методологических соображений
мы остановили свой выбор на состоятельном
против любой альтернативы критерии
типа омега-квадрат (Лемана-Розенблатта).
Однако остается чувство неудовлетворенности
в связи с недостаточной обоснованностью
этого выбора.

ЭФФЕКТИВНОСТЬ АСИМПТОТИЧЕСКАЯ КРИТЕРИЯ

Понятие, позволяющее осуществлять в случае больших выборок количественное двух различных статистич. критериев, применяемых для проверки ложной и той же статистич. гипотезы. Необходимость измерять эффективность критериев возникла в 30-40-е гг., когда появились простые с точки зрения вычислений, но лнеэффективные

Математическая энциклопедия. — М.: Советская энциклопедия
.
И. М. Виноградов
.
1977-1985
.

Смотреть что такое «ЭФФЕКТИВНОСТЬ АСИМПТОТИЧЕСКАЯ КРИТЕРИЯ» в других словарях:

Коэффициент корреляции
— (Correlation coefficient) Коэффициент корреляции это статистический показатель зависимости двух случайных величин Определение коэффициента корреляции, виды коэффициентов корреляции, свойства коэффициента корреляции, вычисление и применение… … Энциклопедия инвестора

Методы математич. статистики, не предполагающие знания функционального вида генеральных распределений. Название непараметрические методы подчеркивает их отличие от классических параметрических методов, в к рых предполагается, что генеральное… … Математическая энциклопедия

Процесс представления информации в определенной стандартной форме и обратный процесс восстановления информации по ее такому представлению. В математич. литературе кодированием наз. отображение произвольного множества Ав множество конечных… … Математическая энциклопедия

Глоссарий

К разделу 7

Автоковариация (autocovariance) — для стационарного ряда Xt
ковариация случайных величинXt9 Xt+T9 у(т) Cov(Xn Xt+T).

Автокорреляционная функция {autocorrelation Junction -ACF) —
для стационарного рядаXt — последовательность его автокорреляций р(т) =
Corr(Xt9 Xt+ г), г = 0,1, 2,…

Автокорреляция (autocorrelation), коэффициент автокорреляции
(autocorrelation coefficient) — для стационарного ряда Xt коэффициент корреляции
случайных величин Хп Xt+T, р(т) = Corr(Xt, Xt+T).

Белый шум (white noise), процесс белого шума (white noise
process) — стационарный случайный процесс Xt с нулевым средним и ненулевой
дисперсией,

для которого Corr(Xt, Xs) = 0 при t Ф s.

«Более экономные» модели (more parsimonious models) — среди
некоторой совокупности альтернативных моделей временного ряда модели с
наименьшим количеством коэффициентов, подлежащих оцениванию.

Временной ряд (time series) — ряд значений некоторой
переменной, измеренных в последовательные моменты времени. Под временным рядом
понимается также случайный процесс с дискретным временем (случайная
последовательность), реализацией которого является наблюдаемый ряд значений.

Выборочная автокорреляционная функция (SACF — sample ACF) — последовательность
выборочных автокорреляций г (к), & = 0, 1,2,строящихся
по имеющейся
реализации временного ряда. Анализ этой последовательности помогает
идентифицировать процесс скользящего среднего и его порядок.

Выборочная частная автокорреляционная функция (SPACF-sample
PACF) — последовательность выборочных частных автокорреляций rpart(k), к = 0,
1, 2, строящихся по имеющейся реализации временного ряда. Анализ этой
последовательности помогает идентифицировать процесс скользящего среднего и его
порядок.

Читать так же:  Что учитывать при выборе раздевалки для фитнес-клуба?

Выборочные автокорреляции {sample autocorrelations) — оценки
автокорреляций р(к) случайного процесса, построенные по имеющейся реализации
временного ряда. Один из вариантов оценки автокорреляции р{к) имеет вид:

T-kf?x » И)У t+k И) у (к) 1 т

где p = x = — ^xt — оценка для р = E{Xt), ] т-к

у (к) = y](xt p)(xt+k р) — оценка для автоковариации
у{к).

Выборочные частные автокорреляции {sample partial
autocorrelations) — оценки частных автокорреляций ррап{т) случайного процесса,
построенные по имеющейся реализации временного ряда.

Гауссовский белый шум {Gaussian white noise process) —
процесс белого шума, одномерные распределения которого являются нормальными
распределениями с нулевым математическим ожиданием.

Гауссовский случайный процесс {Gaussian process) — случайный
процесс, у которого для любого целого m > О и любого набора моментов времени
tx < t2 < … < tm совместные распределения случайных величин Xti, Xtm
являются m-мерными нормальными распределениями.

Инновация {innovation) — текущее значение случайной ошибки в
правой части соотношения, определяющего процесс авторегрессии Хг Инновация не

коррелирована с запаздывающими значениямиXt_k9 к= 1, 2, …
Последовательные значения инноваций (инновационная последовательность) образуют
процесс белого шума.

Информационный критерий Акаике {Akaike information criterion
— АІС) — один из критериев выбора «наилучшей» модели среди нескольких
альтернативных моделей. Среди альтернативных значений порядка модели
авторегрессии выбирается значение, которое минимизирует величину

о 2к А1С(£) = 1п0£2+у,

Оценка дисперсии инноваций єг в AR модели к-то порядка.

Критерий Акаике асимптотически переоценивает (завышает)
истинное значение к0 с ненулевой вероятностью.

Информационный критерий Хеннана — Куинна (Hannan-Quinn
information criterion — HQC) — один из критериев выбора «наилучшей» модели
среди нескольких альтернативных моделей. Среди альтернативных значений порядка
модели авторегрессии выбирается значение, которое минимизирует величину

UQ(k) = In а2к + к — ,

где Т — количество наблюдений;

(т£ — оценка дисперсии инноваций st в AR модели
А>го порядка.

Критерий обладает достаточно быстрой сходимостью к истинному
значению к0 при Т -» оо. Однако при небольших значениях Т этот критерий недооценивает
порядок авторегрессии.

Информационный критерий Шварца (Schwarz information
criterion — SIC) — один из критериев выбора «наилучшей» модели среди нескольких
альтернативных моделей. Среди альтернативных значений порядка модели
авторегрессии выбирается значение, которое минимизирует величину

SIC(£) = lno>2+Ar-,

где Т — количество наблюдений;

а? — оценка дисперсии инноваций st в AR модели А:-го
порядка.

Коррелограмма (correlogram) — для стационарного ряда: график
зависимости значений автокорреляций р(т) стационарного ряда от т.
Коррелограммой называют также пару графиков, приводящихся в протоколах анализа
данных в различных пакетах статистического анализа: графика выборочной
автокорреляционной функции и графика выборочной частной автокорреляционной функции.
Наличие этих двух графиков помогает идентифицировать модель ARMA, порождающую
имеющийся ряд наблюдений.

Обратный прогноз (backcasting) — прием получения более
точной аппроксимации условной функции правдоподобия при оценивании модели
скользящего среднего MA(q):

Xt = et + bxst_x + b2st_2 + … +
bqet_q9 bq Ф0,

по наблюдениям xl9 …, хт. Результат максимизации (no bx,
bl9 …, bq) условной функции правдоподобия, соответствующей наблюдаемым
значениям хХ9х29 …9хт при фиксированных значениях є09 є_Х9 є_д+Х9 зависит от
выбранных значений б*0, е_є_д+1. Если процесс MA(q) обратим, то можно положить
6*0 = є_х = … = s_q+x = 0. Но для улучшения качества оценивания можно методом
обратного прогноза «оценить» значения є09 е_Х9 є_д+х и использовать оцененные значения
в условной функции правдоподобия. Оператор запаздывания (lag operator — L)9
оператор обратного сдвига (back-shift operator) — оператор, определяемый
соотношением: LXt = Xt_x. Удобен для компактной записи моделей временных рядов
и для формулирования условий, обеспечивающих те или иные свойства ряда.
Например, с помощью этого оператора уравнение, определяющее модель ARMA(p, q)

Xt = Z ajxt-j + Z bj£t-j > <*Р*ъ>ъч* О,

может быть записано в виде: a(L) Xt = Ь(Ь)єп где

a(L) = 1 (axL + a2L2 + … + apLp

b(L)=l+blL + b2L2 + … + bqLq.

Проблема общих множителей (common factors) — наличие общих
множителей у многочленов a(L) и b(L)9 соответствующих AR и МА составляющим
модели ARMA:

Наличие общих множителей в спецификации модели ARMA
затрудняет практическую идентификацию модели по ряду наблюдений.

Процесс авторегрессии первого порядка (first-order
autoregressive process, AR(1)) — случайный процесс, текущее значение которого
является суммой линейной функции от запаздывающего на один шаг значения
процесса и случайной ошибки, не коррелированной с прошлыми значениями процесса.
При этом последовательность случайных ошибок образует процесс белого шума.

Процесс авторегрессии порядка р (pth-order autoregressive
process — AR(p)) — случайный процесс, текущее значение которого является суммой
линейной функции от запаздывающих на р шагов и менее значений процесса и
случайной ошибки, не коррелированной с прошлыми значениями процесса. При этом
последовательность случайных ошибок образует процесс белого шума.

Процесс скользящего среднего порядка q (qth-order moving
average process — MA(g)) — случайный процесс, текущее значение которого
является линейной функцией от текущего значения некоторого процесса белого шума
и запаздывающих на р шагов и менее значений этого процесса белого шума.

Разложение Вольда (Wold»s decomposition) — представление
стационарного в широком смысле процесса с нулевым математическим ожиданием в
виде суммы процесса скользящего среднего бесконечного порядка и линейно
детерминированного процесса.

Сезонная авторегрессия первого порядка (SAR(l) — first order
seasonal auto-regression) — случайный процесс, текущее значение которого
является линейной функцией от запаздывающего на S шагов значения этого процесса
и случайной ошибки, не коррелированной с прошлыми значениями процесса. При этом
последовательность случайных ошибок образует процесс белого шума. Здесь S = 4
для квартальных данных, S = 12 для месячных данных.

Сезонное скользящее среднее первого порядка (SMA(l) — first
order seasonal moving average) — случайный процесс, текущее значение которого
равно сумме линейной функции от текущего значения некоторого процесса белого
шума и запаздывающего на S шагов значения этого процесса белого шума. При этом
последовательность случайных ошибок образует процесс белого шума. Здесь 5 = 4
для квартальных данных, 5=12 для месячных данных.

Система уравнений Юла — Уокера (Yule — Walker equations) —
система уравнений, связывающая автокорреляции стационарного процесса
авторегрессии порядка р с его коэффициентами. Система позволяет последовательно
находить значения автокорреляций и дает возможность, используя первые р
уравнений, выразить коэффициенты стационарного процесса авторегрессии через
значения первых р автокорреляций, что можно непосредственно использовать при
подборе модели авторегрессии к реальным статистическим данным.

Случайный процесс с дискретным временем (discrete-time
stochastic process, discrete-time random process) — последовательность
случайных величин, соответствующих наблюдениям, произведенным в
последовательные моменты времени, имеющая определенную вероятностную структуру.

Смешанный процесс авторегрессии — скользящего среднего,
процесс авторегрессии с остатками в виде скользящего среднего (autoregressive
moving average, mixed autoregressive moving average — ARMA(p, q)) — случайный
процесс, текущее значение которого является суммой линейной функции от
запаздывающих на р шагов и менее значений процесса и линейной функции от
текущего значения некоторого процесса белого шума и запаздывающих на q шагов и
менее значений этого процесса белого шума.

Статистика Бокса — Пирса (Box-Pierce Q-statistic) — один из
вариантов g-ста-тистик:

Є = г£г2(*),

Статистика Люнга — Бокса (Ljung-Box Q-statistic) — один из
вариантов g-ста-тистик, более предпочтительный по сравнению со статистикой
Бокса — Пирса:

где Т — количество наблюдений; г (к)- выборочные
автокорреляции.

Используется для проверки гипотезы о том, что наблюдаемые
данные являются реализацией процесса белого шума.

Стационарный в широком смысле (wide-sense stationary), слабо
стационарный (weak-sense stationary, weakly stationary), стационарный второго
порядка (second-order stationary), ковариационно стационарный
(covari-ance-stationary) случайный процесс (stochastic process) — случайный
процесс с постоянным математическим ожиданием, постоянной дисперсией и
инвариантными по гковариациями случайных величинXt,Xt+T:

Cov(Xt,Xt+T) = r(r).

Строго стационарный, стационарный в узком смысле (strictly
stationary, strict-sense stationary) случайный процесс (stochastic process) —
случайный процесс с инвариантными по г совместными распределениями случайных
величинXh+T, …,+Т.

Условие обратимости процессов MA(q) и ARMA(p, q)
(invertibility condition) — для процессов Xt вида MA(g): Xt = b(L)st или
ARMA(p, q): a(L)(Xt ju) = = b(L)st — условие на корни уравнения b(z) = О,
обеспечивающее существование эквивалентного представления процесса Xt в виде
процесса авторегрессии бесконечного порядка AR(oo):

Условие обратимости: все корни уравнения b(z) = О лежат вне
единичного круга |z| < 1.

Условие стационарности процессов AR(p) и ARMA(p, q)
(stationarity condition) — для процессов Xt вида AR(p): a(L)(Xt ju) = et или
ARMA(p, q) a(L)(Xt ju) = = b(L)st — условие на корни уравнения a(z) = 0,
обеспечивающее стационарность процесса Хг Условие стационарности: все корни
уравнения b(z) = О лежат вне единичного круга |z| < 1. Если многочлены a(z)
и b(L) не имеют общих корней, то это условие является необходимым и достаточным
условием стационарности процесса Хг

Частная автокорреляционная функция (PACF — partial
autocorrelation function) — для стационарного ряда последовательность частных
автокорреляций ррап(г), т = 0, 1,2,…

Частная автокорреляция (РАС — partial autocorrelation) — для
стационарного ряда значение ppart(r) коэффициента корреляции между случайными
величинами Xt nXt+k, очищенными от влияния промежуточных случайных величин
Xt+l9…9Xt+k_Y.

Этап диагностики модели (diagnostic checking stage) —
диагностика оцененной модели ARMA, выбранной на основании имеющегося ряда
наблюдений.

Этап идентификации модели (identification stage) — выбор
модели порождения ряда на основании имеющегося ряда наблюдений, определение
порядков р и q модели ARMA.

Этап оценивания модели {estimation stage) — оценивание
коэффициентов модели ARMA, подобранной на основании имеющегося ряда наблюдений.

(7-статистики (Q-statistics) — статистики критериев,
используемых для проверки гипотезы о том, что наблюдаемые данные являются
реализацией процесса белого шума.

К разделу 8

Векторная авторегрессия порядкар (ph-order vector
autoregression — VAR(p)) — модель порождения группы временных рядов, в которой
текущее значение каждого ряда складывается из постоянной составляющей, линейных
комбинаций запаздывающих (до порядка р) значений данного ряда и остальных рядов
и случайной ошибки. Случайные ошибки в каждом уравнении не коррелированы с
запаздывающими значениями всех рассматриваемых рядов. Случайные векторы,
образованные ошибками в разных рядах в один и тот же момент времени, являются
независимыми, одинаково распределенными случайными векторами, имеющими нулевые
средние.

Долговременная (long-run) связь — устанавливающаяся с
течением времени определенная связь между переменными, по отношению к которой
происходят достаточно быстрые осцилляции.

Долгосрочные мультипликаторы (long-run multipliers,
equilibrum multipliers) — в динамической модели с авторегрессионно
распределенными запаздываниями — коэффициенты сх,cs долгосрочной зависимости
переменной от экзогенных переменных хи, xst. Коэффициент Cj отражает изменение
значения yt при изменении на единицу текущего и всех предыдущих значений переменной
xjt.

Импульсные мультипликаторы (impact multiplier, short-run
multiplier) — в динамической модели с авторегрессионно распределенными
запаздываниями — величины, показывающие влияние единовременных (импульсных)
изменений значений экзогенных переменных хи, xst на текущее и последующие
значения переменной jr

Кросс-ковариации (cross-covariances) — коэффициенты
корреляции между значениями разных компонент векторного ряда в совпадающие или
несовпадающие моменты времени.

Кросс-ковариационная функция (cross-covariance function) —
последовательность кросс-корреляций двух компонент стационарного векторного
ряда.

Модели с авторегрессионно распределенными запаздываниями
(autoregressive distributed lag models — ADL) — модели, в которых текущее
значение объясняемой переменной является суммой линейной функции от нескольких
запаздывающих значений этой переменной, линейных комбинаций текущих и
нескольких запаздывающих значений объясняющих переменных и случайной ошибки.

Передаточная функция (transfer function) — матричная
функция, устанавливающая влияние единичных изменений в экзогенных переменных на
эндогенные переменные.

Процесс порождения данных (data generating process — DGP) —
вероятностная модель, в соответствии с которой порождаются наблюдаемые
статистические данные. Процесс порождения данных, как правило, неизвестен
исследователю, анализирующему данные. Исключением являются ситуации, когда
исследователь сам выбирает процесс порождения данных и получает искусственные
статистические данные, имитируя выбранный процесс порождения данных.

Статистическая модель (statistical model — SM) — выбранная
для оценивания модель, структура которой предположительно соответствует
процессу порождения данных. Выбор статистической модели производится на
основании имеющейся экономической теории, анализа имеющихся в распоряжении
статистических данных, анализа результатов более ранних исследований.

Стационарный векторный (АГ-мерный) ряд (K-dimensional
stationary time series) — последовательность случайных векторов размерности К,
имеющих одинаковые векторы математических ожиданий и одинаковые ковариационные
матрицы, для которой перекрестные корреляции (кросс-корреляции) между значением
к-й компоненты ряда в момент t и значением 1-й компоненты ряда в момент (t + s)
зависят только от s.

К разделу 9

Гипотеза единичного корня (UR — unit root hypothesis) —
гипотеза, формулируемая в рамках модели ARMA(^, q): a(L)Xt = b(L)cr Гипотеза о
наличии у авторегрессионного полинома a(L) модели ARMA хотя бы одного корня,
равного 1. При этом обычно предполагается, что у полинома a(L) отсутствуют
корни, по модулю меньшие 1.

Дифференцирование (differencing) — переход от ряда уровней
Xt к ряду разностей Xt Xt_v Последовательное дифференцирование ряда дает
возможность устранить стохастический тренд, имеющийся в исходном ряде.

Интегрированный порядка к (integrated of order к) ряд — ряд
Хп который не является стационарным или стационарным относительно
детерминированного тренда (т.е. не является TS-рядом) и для которого ряд,
полученный в результате ^-кратного дифференцирования ряда Хп является
стационарным, но ряд, полученный в результате (к 1)-кратного
дифференцирования рядаХг, не является ГЯ-рядом.

Читать так же:  Чем моются натяжные потолки глянцевые. Как помыть матовый натяжной потолок без разводов в домашних условиях? Как правильно отмыть натяжной потолок – алгоритм действий

Коинтеграционная связь (cointegration) — долгосрочная связь
между несколькими интегрированными рядами, характеризующая равновесное
состояние системы этих рядов.

Модель коррекции ошибок (error-correction model) —
комбинация краткосрочной и долгосрочной динамических регрессионных моделей при
наличии коинтеграционной связи между интегрированными рядами.

Оператор дифференцирования (difference operator) — оператор
А, переводящий ряд уровней Xt в ряд разностей:

Передифференцированный ряд (overdifferenced time series) —
ряд, полученный в результате дифференцирования Г5-ряда. Последовательное
дифференцирование ГО-ряда помогает устранить детерминированный полиномиальный
тренд. Однако дифференцирование Г^-ряда имеет некоторые нежелательные
последствия при подборе модели по статистическим данным и использовании
подобранной модели для целей прогнозирования будущих значений ряда.

Разностно стационарные, ЛУ-ряды (DS — difference stationary
time series) — интегрированные ряды различных порядков к= 1,2, … Приводятся к
стационарному ряду однократным или многократным дифференцированием, но не могут
приводиться к стационарному ряду вычитанием детерминированного тренда.

Ряд типа ARIMA(p, A, q) (ARIMA — autoregressive integrated
moving average) — временной ряд, который в результате ^-кратного
дифференцирования приводится к стационарному ряду ARMA(p, q).

Ряды, стационарные относительно детерминированного тренда,
Г5-ряды

(TS — trend-stationary time series) — ряды, становящиеся
стационарными после вычитания из них детерминированного тренда. В класс таких
рядов включаются и стационарные ряды без детерминированного тренда.

Случайное блуждание, процесс случайного блуждания (random
walk) — случайный процесс, приращения которого образуют процесс белого шума:
AXt st, так что Xt = Xt_ х + єг

Случайное блуждание со сносом, случайное блуждание с дрейфом
(random walk with drift) — случайный процесс, приращения которого являются
суммой константы и процесса белого шума: AXt = Xt Xt_ х = а + st, так что Xt
= Xt_x + а + єг Константа а характеризует постоянно присутствующий при переходе
к следующему моменту времени снос траекторий случайного блуждания, на который
накладывается случайная составляющая.

Стохастический тренд (stochastic trend) — временной ряд Zt,
для которого

Z, = єх + є2 + … + et. Значение случайного блуждания в
момент t равно t

Xt = Х0 + ^ є8, так что Xt Х0 = єх + є2 + … + єг Иными
словами, модель

стохастического тренда — процесс случайного блуждания,
«выходящего из начала координат» (для него Х0 = 0).

Шок инновации (shock innovation) — единовременное
(импульсное) изменение инновации.

Эффект Слуцкого (Slutsky effect) — эффект образования ложной
периодичности при дифференцировании ряда, стационарного относительно
детерминированного тренда. Например, если исходный ряд представляет собой сумму
детерминированного линейного тренда и белого шума, то продифференцированный ряд
не имеет детерминированного тренда, но оказывается автокоррелированным.

^-гипотеза (TS hypothesis) — гипотеза о том, что
рассматриваемый временной ряд является стационарным или рядом, стационарным
относительно детерминированного тренда.

К разделу 10

Долговременная дисперсия (long-run varance) — для ряда щ с
нулевым математическим ожиданием определяется как предел

Var(ux +… + ит)

Г-юс Т T-+OD

Критерии Дики — Фуллера (Dickey-Fuller tests) — группа
статистических критериев для проверки гипотезы единичного корня в рамках
моделей, предполагающих нулевое или ненулевое математическое ожидание
временного ряда, а также возможное наличие у ряда детерминированного тренда.

При применении критериев Дики — Фуллера чаще всего
оцениваются статистические модели

рAxt = а + (3t + cpxt_x + +є*> t = P + h—,T,

Axt =a + cpxt_x + ^0jAxt_j +£*, t =
/7 + 1,…, Г,

Axt = cpxt_x + ]T 6j Axt_j +єп t = p +1,…, T.

Полученные при оценивании этих статистических моделей
значения /-статистик / для проверки гипотезы Н0: ср = О сравниваются с
критическими значениями /крит, зависящими от выбора статистической модели.
Гипотеза единичного корня отвергается, если f < /крит.

Критерий Квятковского — Филлипса — Шмидта — Шина (KPSS test)
— критерий для различения DSи Г5-рядов, в котором в качестве нулевой берется
га-гипотеза.

Критерий Лейбурна (Leybourne test) — критерий для проверки
гипотезы единичного корня, статистика которого равна максимальному из двух
значений статистики Дики — Фуллера, полученных по исходному ряду и по ряду с
обращенным временем.

Критерий Перрона (Perron test) — критерий для проверки
нулевой гипотезы о принадлежности ряда классу DS, обобщающий процедуру Дики —
Фуллера на ситуации, когда на периоде наблюдений имеются структурные изменения
модели в некоторый момент времени Тв в форме либо сдвига уровня (модель
«краха»), либо изменения наклона тренда (модель «изменения роста»), либо
сочетания этих двух изменений. При этом предполагается, что момент Тв
определяется экзогенным образом — в том смысле, что он не выбирается на
основании визуального исследования графика ряда, а связывается с моментом
известного масштабного изменения экономической обстановки, существенно
отражающегося на поведении рассматриваемого ряда.

Гипотеза единичного корня отвергается, если наблюдаемое
значение статистики ta критерия оказывается ниже критического уровня, т.е. если

Асимптотические распределения и критические значения для
статистик ta9 первоначально приведенные Перроном, верны для моделей с
инновационными выбросами.

Критерий Филлипса — Перрона (Phillips-Perron test) —
критерий, сводящий проверку гипотезы о принадлежности ряда xt классу DS-рядов к
проверке гипотезы Я0: ср= О в рамках статистической модели

SM: kxt=a + f3t + (pxt_x+un t = 2,…,T,

где, как и в критерии Дики — Фуллера, параметры an рмогут
быть взяты равными нулю.

Однако в отличие от критерия Дики — Фуллера к рассмотрению
допускается более широкий класс временных рядов.

Критерий основывается на Г-статистике для проверки гипотезы
Н0: <р = О, но использует вариант этой статистики Zn скорректированный на
возможную автокоррелированность и гетероскедастичность ряда иг

Критерий Шмидта — Филлипса (Schmidt-Phillips test) —
критерий для проверки гипотезы единичного корня в рамках модели

где wt = jSwt_x + st; t — 2,Г;

у/ — параметр, представляющий уровень; £ — параметр,
представляющий тренд.

Критерий DF-GLS (DF-GLS test) — критерий, асимптотически
более мощный, чем критерий Дики — Фуллера.

Куртозис (kurtosis) — коэффициент пикообразности
распределения.

Модель аддитивного выброса (additive outlier) — модель, в
которой при переходе через дату излома Тв ряд yt сразу начинает осциллировать
вокруг нового уровня (или новой линии тренда).

Модель инновационного выброса (innovation outlier) — модель,
в которой после перехода через дату излома Тв процесс yt лишь постепенно
выходит на новый уровень (или к новой линии тренда), вокруг которого начинает
происходить осцилляция траектории ряда.

Многовариантная процедура проверки гипотезы единичного корня
(Dolado, Jenkinson, Sosvilla-Rivero) — формализованная процедура использования
критериев Дики — Фуллера с последовательной проверкой возможности редукции
исходной статистической модели, в качестве которой рассматривается модель

РAxt = а + fit +
(pxt_x + ^0jAxt-j +£7> t = P + h—9T.

Предпосылкой для использования формализованной
многовариантной процедуры является низкая мощность критериев единичного корня.
В связи с этим в многовариантной процедуре предусмотрены повторные проверки гипотезы
единичного корня в более простых моделях с меньшим числом оцениваемых
параметров. Это увеличивает вероятность правильного отвержения гипотезы
единичного корня, но сопровождается потерей контроля над уровнем значимости
процедуры.

Обобщенный критерий Перрона (generalized Perron test) —
предложенный Зиво-том и Эндрюсом (относящийся к инновационным выбросам)
безусловный критерий, в котором датировка точки смены режима производится в
«автоматическом режиме», путем перебора всех возможных вариантов датировки и
вычисления для каждого варианта датировки /-статистики ta для проверки гипотезы
единичного корня; в качестве оцененной даты берется такая, для которой значение
ta оказывается минимальным.

Процедура Кохрейна, отношение дисперсий (variance ratio
test) — процедура различения TSи /)5-рядов, основанная на специфике поведения
для этих

рядов отношения VRk = -, где Vk = -D(Xt -Xt_k).

Стандартное броуновское движение (standard Brownian motion)
— случайный процесс W(r) с непрерывным временем, являющийся непрерывным
аналогом дискретного случайного блуждания. Это процесс, для которого:

приращения (W(r2) W(r{)),(W(rk) W(rk_x)) независимы в
совокупности, если 0 < rx < г2 < … < гк и W(s) W(r) ~ N(0, s г) при s > г;

реализации процесса W(r) непрерывны с вероятностью 1.

Ширина окна (window size) — количество выборочных
автоковариаций ряда, используемых в оценке Ньюи — Веста для долговременной
дисперсии ряда. Недостаточная ширина окна ведет к отклонениям от номинального
размера критерия (уровня значимости). В то же время увеличение ширины окна, для
того чтобы избежать отклонений от номинального размера критерия, ведет к
падению мощности критерия.

Двумерный гауссовский белый шум (two-dimentional Gaussian
white noise) — последовательность независимых, одинаково распределенных
случайных векторов, имеющих двумерное нормальное распределение с нулевым
математическим ожиданием.

Детерминистская коинтеграция (stochastic cointegration) —
существование для группы интегрированных рядов их линейной комбинации,
аннулирующей стохастический и детерминированный тренды. Ряд, представляемый
этой линейной комбинацией, является стационарным.

Идентификация коинтегрирующих векторов (identification of
the cointegrating vectors) — выбор базиса коинтеграционного пространства,
состоящего из коинтегрирующих векторов, имеющих разумную экономическую
интерпретацию.

Коинтеграционное пространство (cointegrating space) —
совокупность всех возможных коинтегрирующих векторов для коинтегрированной
системы рядов.

Коинтегрированные временные ряды, коинтегрированные в узком
смысле временные ряды (cointegrated time series) — группа временных рядов, для
которой существует нетривиальная линейная комбинация этих рядов, являющаяся
стационарным рядом.

Коинтегрирующий вектор (cointegrating vector) — вектор
коэффициентов нетривиальной линейной комбинации нескольких рядов, являющейся
стационарным рядом.

Критерий максимального собственного значения (maximum
eigenvalue test) — критерий, который в процедуре Йохансена оценивания ранга
коинтеграции г системы интегрированных (порядка 1) рядов используется для
проверки гипотезы Н0:г = г* против альтернативной гипотезы НА: г = г* + 1.

Критерий следа (trace test) — критерий, который в процедуре
Йохансена оценивания ранга коинтеграции г системы интегрированных (порядка 1)
рядов используется для проверки гипотезы Н0: г = г* против альтернативной
гипотезы НА:г> г*.

Общие тренды (common trends) — группа рядов, управляющих
стохастической нестационарностью системы коинтегрированных рядов.

Причинность по Грейнджеру (Granger causality) — факт
улучшения качества прогноза значения yt переменной Y в момент t по совокупности
всех прошлых значений этой переменной при учете прошлых значений некоторой
другой переменной.

Пять ситуаций в процедуре Йохансена — пять ситуаций, от
которых зависят критические значения статистик критериев отношения
правдоподобий, используемых в процедуре Йохансена оценивания ранга коинтеграции
системы интегрированных (порядка 1) рядов:

Н2(г): в данных нет детерминированных трендов, в СЕ не
включаются ни константа, ни тренд;

Н*(г): в данных нет детерминированных трендов,

в СЕ включается константа, но не включается тренд;

Нх (г): в данных есть детерминированный линейный тренд, в СЕ
включается константа, но не включается тренд;

Н*(г) в данных есть детерминированный линейный тренд, в СЕ
включаются константа и линейный тренд;

Н(г): в данных есть детерминированный квадратичный тренд, в
СЕ включаются константа и линейный тренд.

(Здесь СЕ — коинтеграционное уравнение.)

При фиксированном ранге г перечисленные 5 ситуаций образуют
цепочку вложенных гипотез:

Н2(г) с Н*(г) с Я, (г) с Нг) с Н{г).

Это дает возможность, используя критерий отношения
правдоподобий, проверять выполнение гипотезы, стоящей левее в этой цепочке, в
рамках гипотезы, расположенной непосредственно справа.

Ранг коинтеграции (cointegrating rank) — максимальное
количество линейно независимых коинтегрирующих векторов для заданной группы
рядов, ранг коинтеграционного пространства.

Стохастическая коинтеграция (stochastic cointegration) —
существование для группы интегрированных рядов линейной комбинации,
аннулирующей стохастический тренд. Ряд, представляемый этой линейной
комбинацией, не содержит стохастического тренда, но может иметь
детерминированный тренд.

Треугольная система Филлипса (Phillips»s triangular system)
— представление системы TV коинтегрированных рядов с рангом коинтеграции г в
виде системы уравнений, первые г из которых описывают зависимость г выделенных
переменных от остальных (N г) переменных (общих трендов), а остальные
уравнения описывают модели порождения общих трендов.

TV-мерный гауссовский белый шум (N-dimentional Gaussian
white noise) — последовательность независимых, одинаково распределенных
случайных векторов, имеющих TV-мерное нормальное распределение с нулевым
математическим ожиданием.

Диссертация

Поэтому одним из путей развития проверки статистических гипотез стал путь «эмпирического» построения критериев, когда конструируемая статистика критерия основана на определенном принципе, остроумной идее или здравом смысле, но оптимальность ее не гарантирована. Для того, чтобы оправдать применение подобных статистик при проверке гипотез против определенного класса альтернатив, чаще всего методом…

  • 1.
    Вспомогательные сведения

    • 1. 1.
      Сведения из теории С/- и V- статистик
    • 1. 2.
      Определение и вычисление бахадуровской эффективности
    • 1. 3.
      О больших уклонениях II- и V- статистик
  • 2.
    Критерии симметрии Барингхауза-Хенце

    • 2. 1.
      Введение
    • 2. 2.
      Статистика
    • 2. 3.
      Статистика
  • 3.
    Критерии экспоненциальности

    • 3. 1.
      Введение
    • 3. 2.
      Статистика Я
    • 3. 3.
      Статистика п
  • 4.
    Критерии нормальности

    • 4. 1.
      Введение
    • 4. 2.
      Статистика В^
    • 4. 3.
      Статистика В^п
    • 4. 4.
      Статистика В|)П
  • 5.
    Критерии согласия с законом Коши

    • 5. 1.
      Введение
    • 5. 2.
      Статистика
    • 5. 3.
      Статистика

Асимптотические свойства критериев симметрии и согласия, основанных на характеризациях (реферат, курсовая, диплом, контрольная)

В настоящей диссертации строятся и исследуются критерии согласия и симметрии, основанные на характеризационных свойствах распределений, а также вычисляется их асимптотическая относительная эффективность для ряда альтернатив.

Построение статистических критериев и изучение их асимптотических свойств является одной из важнейших задач математической статистики. При проверке простой гипотезы против простой альтернативы задача решается с помощью леммы Неймана-Пирсона, которая, как известно, дает оптимальный (наиболее мощный) критерий в классе всех критериев заданного уровня. Это критерий отношения правдоподобия.

Читать так же:  Чем кормить собаку при истощении. Причины истощения собак и что делать владельцу в этой ситуации? Как кормить собаку с больной печенью, поджелудочной, панкреатитом, почечной недостаточностью

Однако для более трудных и важных для практики задач проверки гипотез, связанных либо с проверкой сложных гипотез, либо с рассмотрением сложных альтернатив, равномерно наиболее мощные критерии существуют редко, а роль критерия отношения правдоподобия существенно меняется. Статистику отношения правдоподобия обычно не удается вычислить в явном виде, она теряет свойство оптимальности, а ее распределение неустойчиво к изменениям статистической модели. Более того, статистик часто вообще не может определить вид альтернативы, без чего построение параметрических критериев теряет смысл.

Поэтому одним из путей развития проверки статистических гипотез стал путь «эмпирического» построения критериев, когда конструируемая статистика критерия основана на определенном принципе, остроумной идее или здравом смысле, но оптимальность ее не гарантирована.

Типичными примерами таких статистик являются статистика знаков, статистика х2 Пирсона (1900), статистика Колмогорова (1933), измеряющая равномерное расстояние между эмпирической и истинной функцией распределения, ранговый коэффициент корреляции Кендалла (1938) или статистика Бикела-Розенблатта (1973), основанная на квадратичном риске ядерной оценки плотности . В настоящее время математическая статистика располагает многими десятками «эмпирических» статистик для проверки гипотез согласия, симметрии, однородности, случайности и независимости, и в литературе постоянно предлагаются все новые и новые статистики такого типа. Огромная литература посвящена изучению их точных и предельных распределений, оценкам скорости сходимости, большим уклонениям, асимптотическим разложениям и т. д.

Для того, чтобы оправдать применение подобных статистик при проверке гипотез против определенного класса альтернатив, чаще всего методом статистического моделирования вычисляют их мощность. Однако для любого состоятельного критерия мощность с ростом объема выборки стремится к единице, и потому не всегда информативна. Более глубокий анализ сравнительных свойств статистик может быть осуществлен на основе понятия асимптотической относительной эффективности (АОЭ). Различные подходы к вычислению АОЭ предлагались Э. Питменом, Дж. Ходжесом и Э. Леманом, Р. Бахадуром, Г. Черновым и В. Калленбергом в середине XX в., результаты развития теории АОЭ к середине 90-х годов подведены в монографии . Общепринято мнение, что синтез новых критериев должен сопровождаться не только анализом их свойств, но и вычислением АОЭ для того, чтобы оценить их качество и дать обосно ванные рекомендации по их использованию на практике.

В настоящей работе используется идея построения критериев на основе характеризации распределений свойством равнораспределенности. Ха-рактеризационная теория берет свое начало из работы Д. Пойа, опубликованной в 1923 г. Затем она развивалась в работах И. Марцинкевича, С. Н. Бернштейна, Э. Лукача, Ю. В. Линника, A.A. Зингера, Ж. Дармуа, В. П. Скитовича, С.Р. Pao, A.M. Кагана, Я. Галамбоша, С. Котца, Л. Б. Клебанова и многих других математиков. Литература по этому вопросу велика, и в настоящее время существует несколько монографий, посвященных характеризациям, например, , , , , , , .

Идея построения статистических критериев на основе характериза-ций свойством равнораспределенности принадлежит Ю. В. Линнику , . В конце обширной работы он писал: «. можно поставить вопрос о построении критериев согласия выборки со сложной гипотезой, основанных на одинаковой распределенности двух соответствующих статистик gi (xi> .хг) и д2{х, ¦¦¦хг) и на сведении, таким образом, вопроса к критерию однородности.»

Вернемся к классической теореме Пойа , чтобы объяснить на конкретном примере, как может действовать такой подход. В простейшем варианте эта теорема формулируется следующим образом.

Теорема Пойа. Пусть X и Y две независимые и одинаково распределенные центрированные с. в. Тогда с. в. (X + Y)//2 и X одинаково распределены в том и только том случае, когда закон распределения X нормальный.

Предположим, что мы имеем выборку из центрированных независимых наблюдений Xi, ., Хп и хотим проверить (сложную) нулевую гипотезу о принадлежности распределения этой выборки к нормальному закону со средним 0 и некоторой дисперсией. Построим по нашей выборке обычную эмпирическую функцию распределения (ф.р.) п

Fn (t) = п-^ВД

Gn (t) = п~2? ВД + Xj < iv^}, t <= R1. i, j=l

В силу теоремы Гливенко-Кантелли, справедливой и для V-статисти-ческих эмпирических ф.р. , при больших п функция Fn (t) равномерно сближается с ф.р. F (t) = Р (Х < t), а функция Gn (t) равномерно сближается с G (t) = ЦХ + У < tV2). Поскольку при нулевой гипотезе F = G, то Fn (t) близка к Gn (t), и критерий значимости можно основывать на подходящем функционале Тп от разности Fn (t) — Gn (t). Напротив, при альтернативе (то есть при нарушении нормальности) по теореме Пойа F ф G, что приводит к большим значениям Тп и позволяет отвергнуть нулевую гипотезу, обеспечивая состоятельность критерия.

Однако эта конструкция, основывающаяся на идее Ю. В. Линника, почти не получила развития, возможно, ввиду технических трудностей при построении и анализе получающихся критериев. Другая причина состоит, вероятно, в том, что характеризации распределений свойством равнораспределенности немногочисленны и редко встречаются.

Нам известны лишь немногие работы, посвященные в той или иной мере развитию идеи Ю. В. Линника. Это работы Барингхауза и Хенце и Мульере и Никитина , о которых будет сказано ниже. Имеются и работы, в которых критерии согласия для конкретных распределений также строятся на основе характеризаций, но не на основе равнораспределенности, например, , , , , , , , .

Наиболее часто в литературе встречается использование характериза-ции экспоненциального распределения различными вариантами свойства отсутствия памяти , , , , , , .

Следует отметить, что почти во всех этих работах (кроме разве лишь и ) АОЭ рассматриваемых критериев не вычисляется и не обсуждается. В настоящей диссертации мы не только исследуем асимптотические свойства известных и предлагаемых нами критериев, основанных на характеризациях, но и вычисляем их локальную точную (или приближенную) АОЭ по Бахадуру.

Дадим теперь определение понятию АОЭ. Пусть {Тп} и {1^} — две последовательности статистик, построенные по выборке Х,., Хп с распределением Рд, где в € 0 С Я1, и проверяется нулевая гипотеза Но: 9 € во С в против альтернативы А: в € &copy-х = &copy-6о. Пусть Мт (а, Р,0) — минимальный объем выборки Х[,., Хп, для которого последовательность {Тп} с заданным уровнем значимости, а > 0 достигает мощности /3 < 1 при альтернативном значении параметра в € (c)1- Аналогично вводится в). Относительной эффективностью критерия, основанного на статистике Тп, по отношению к критерию, основанному на Уп, называется величина равная обратному отношению указанных выборочных объемов:

Поскольку относительная эффективность как функция трех аргументов не поддается вычислению в явном виде даже для самых простых статистик, то принято рассматривать пределы:

Птет, у (а,/?, 0), Нтет, у (а,/3,0).

В первом случае получается АОЭ по Бахадуру, второй предел определяет АОЭ по Ходжесу-Леману, а третий приводит к определению АОЭ по Питмену. Поскольку в практических приложениях наиболее интересны именно случаи малых уровней значимости, высоких мощностей и близких альтернатив, то все три определения представляются обоснованными и естественными.

В данной работе для сравнения критериев мы будем пользоваться АОЭ по Бахадуру. Для этого есть несколько причин. Во-первых, питме-новская эффективность пригодна в основном для асимптотически нормальных статистик, и при этом условии совпадает с локальной баха-дуровской эффективностью , . Мы же рассматриваем не только асимптотически нормальные статистики, но и статистики квадратичного типа, для которых предельное распределение при нулевой гипотезе резко отличается от нормального, так что питменовская эффективность неприменима. Во-вторых, АОЭ по Ходжесу-Леману непригодна для исследования двусторонних критериев , , поскольку все они оказываются асимптотически оптимальными, а для односторонних критериев эта АОЭ обычно локально совпадает с бахадуровской АОЭ . В третьих, недавно был достигнут значительный прогресс в области больших уклонений для тестовых статистик, что является решающим при вычислении АОЭ по Бахадуру. Мы имеем в виду большие уклонения и— и V—статистик, описанные в недавних работах и .

Перейдем теперь к обзору содержания диссертации. Первая глава носит вспомогательный характер. В ней излагаются необходимые теоретические и технические сведения из теории 11-статистик, теории больших уклонений и теории асимптотической эффективности по Бахадуру.

Глава 2 посвящена построению и исследованию критериев для проверки гипотезы симметрии. Барингхауз и Хенце в предложили идею построения критериев симметрии, основанных на следующей элементарной характеризации.

Пусть X и У — н.о.р.с.в., имеющие непрерывную ф.р. Тогда |Х| и |тах (Х, У)| одинаково распределены тогда и только тогда, когда X и У симметрично распределены относительно нуля.

Эту характеризацию мы используем для построения новых критериев симметрии. Вспомним, что несколько классических критериев симметрии (см. , гл.4) основаны на характеризации симметрии еще более простым свойством равнораспределенности X и —X.

Вернемся к характеризации Барингхауза-Хенце. Пусть Х, ., Хп наблюдения, имеющие непрерывную ф.р. <7. Рассмотрим проверку гипотезы симметрии:

Н0: ОД = 1 — <3(-:г) V я (Е Я1. Это сложная гипотеза, поскольку вид С? не уточняется. В качестве альтернатив мы рассмотрим параметрическую альтернативу сдвига, т. е. G (x-0) = F (x — в), в > 0- скошенную (skew) альтернативу , т. е. д (х-в) = 2f (x)F ($x), в > 0- лемановскую альтернативу , т. е. G (x-, 6) = F1+e (x), 6 > 0 и альтернативу загрязнения , т. е. G{x-6) = (1 — 6) F{x) + 6Fr+1(x), в > 0, г > 0, где F (x) и f (x) являются ф.р. и плотностью некоторого симметричного распределения.

В соответствии с указанной выше характеризацией строится эмпирическая ф.р., основанная на |Xj|,., Хп, п

Hn (t) = n~2 J2 Цтах (Х^Хк)<г}. На основе этих функций составляются статистики: лоо ):

Пусть X uY — неотрицательные и невырожденные н.о.р.с.в., имеющие дифференцируемую в нуле ф.р. F, и пусть 0 < а < 1. Тогда X и min (^, —) одинаково распределены тогда и только тогда, когда F есть ф.р. экспоненциального закона.

Помимо построения самого критерия согласия и изучения его асимптотических свойств, представляют интерес вычисление АОЭ нового критерия и исследование ее зависимости от параметра а.

Второе обобщение этой характеризации принадлежит Дезу . Мы сформулируем его на основе более поздних работ , :

Пусть Xi, ., Хт, т ^ 2 — неотрицательные и невырожденные н.о.р. с.в., имеющие дифференцируемую в нуле ф.р. F. Тогда статистики Х и т minpfi, ., Хт) одинаково распределены тогда и только тогда, когда F есть ф.р. экспоненциального закона.

Пусть Хх,., Хп — независимые наблюдения, имеющие ф.р. Основываясь на сформулированных выше характеризациях, мы можем проверить гипотезу экспоненциальности Но, которая состоит в том, что (7 есть ф.р. экспоненциального закона.Р, против альтернативы Н, состоящей в том, что С Ф? при слабых дополнительных условиях.

В соответствии с данными характеризациями строятся эмпирическая ф.р. п = пВД < О (°-0−3) 1 и -статистические ф.р. п-2 ± (* ^ < 4} + ^{тш (?, < «}), 1 П

Мы предлагаем основывать критерии для проверки экспоненциаль-ности на статистиках: пкп = — с&bdquo-(*)] аоп{1).

В качестве альтернатив мы выбираем стандартные альтернативы, используемые в литературе по проверке экспоненциал ьности: альтернативу Вейбулла с д{х) = (в + 1) хеехр (—х1+в), х ^ 0- альтернативу Макехама с д{х) = (1 + 0(1 — ехр (—х))) ехр (—х — 0(ехр (-х) — 1 + х)), х ^ 0- альтернативу линейности функции интенсивности отказов с д (х) = (1 + вх) ехр[—ж — ^вх2], х^О.

Для предложенных выше двух статистик выписываются предельные распределения при нулевой гипотезе:

Теорема 3.2.1 Для статистики И£ при п —* оо имеет место соотношение где Дз (а) определена в (3.2.2). Теорема 3.3.1 Для статистики п при п —> оо имеет место соотношение

Щ0,(т + 1)2А1(т)), где Д4 (т) определена в (3.3.6).

Поскольку обе статистики зависят от параметров, а и т, то мы устанавливаем, при каких значениях параметров АОЭ по Бахадуру достигают своих максимумов и находим эти значения. Кроме того, мы строим альтернативу, при которой максимум достигается в точке, а ф ½.

Четвертая глава посвящена проверке гипотезы о нормальности. Существует множество характеризаций нормального закона как одного из центральных законов теории вероятностей и математической статистики, и две монографии, посвященные исключительно этому вопросу , . Мы рассмотрим слегка упрощенный вариант известной характери-зации из и :

Пусть Хг, Х2, ., Хт — центрированные н.о.р.с.в., имеющие ф.р. о константы а, а-2,., ат таковы, что 0 < а* < 1 и = 1. Тогда статистики Х и одинаково распределены тогда и только тогда, когда F (x) = Ф (х/а), то есть F — ф.р. нормального закона с нулевым средним и некоторой дисперсией, а > 0.

Пусть Х, ., Хп выборка с ф.р. G. Основываясь на этой характериза-ции, мы можем проверить основную гипотезу Я0, которая состоит в том, что G есть ф.р. нормального закона Фа (х) = Ф (х/а), против альтернативы Hi, состоящей в том, что G ф Фа. Строится обычная эмпирическая ф.р. Gn и V-статистическая ф.р. п ^

Bm, n (t) = п~т (Е 1 + — + < *}),

1.&iquest-т=1 с

Здесь и в дальнейшем символ, а означает суммирование по всем перестановкам индексов. Критерии для проверки нормальности могут быть основаны на следующих статистиках:

В, п = Г dGn (t), J —00 оо

BmAt)-Gn (t)]dGn (t), оо

Bin = Г }

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *